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Roughness exponent in two-dimensional percolation, Potts model, and clock model

JoseArnaldo Redinz and Marcelo Lobato Martins
Departamento de Bica, Universidade Federal de Msa, 36571-000, Vasa, MG, Brazil
(Received 22 January 2001; published 29 May 2001

We present a numerical study of the self-affine profiles obtained from configurations gfstage Potts
(with g=2,3, and 7 andp=10 clock models as well as from the occupation states for site percolation on the
square lattice. The first and second order static phase transitions of the Potts model are located by a sharp
change in the value of the roughness exponegharacterizing those profiles. The low temperature phase of
the Potts model corresponds to flat=€1) profiles, whereas its high temperature phase is associated with
rough (@=0.5) ones. For th@= 10 clock model, in addition to the fléaferromagnetit and rough(paramag-
netic) profiles, an intermediate rough (& <1) phase—associated with a soft spin-wave one—is observed.
Our results for the transition temperatures in the Potts and clock models are in agreement with the static values,
showing that this approach is able to detect the phase transitions in these models directly from the spin
configurations, without any reference to thermodynamical potentials, order parameters, or response functions.
Finally, we show that the roughness exponent insensitive to geometric critical phenomena.
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[. INTRODUCTION text. Recently, Atman and Moreif&] determined the expo-
nentB for the growth process generated by the spatiotempo-

In the past decade, the formation of rough surfaces underl patterns of the DKCA. The value @ exhibits a cusp at
far-from-equilibrium conditions has been a central theme irthe frozen-active frontier and, if one observes the difference
statistical physics. The application of self-affine fractals andconfiguration between two DKCA replicas, also at the
scaling methods was essential to the progress that has beagtive-chaotic critical frontier. The advantage of this method
made towards the understanding of these nonequilibriunin finding the phase diagram of the DKCA is that it is not
phenomena. Within this context, the standard tools used tBecessary to wait until the system “thermalizes,” a process
describe various self-affine structures observed in disorderé#iat often expends a lot of computational time.
surface growth are the roughnessand the growth3 expo- In this paper we extended the roughness exponent analy-
nents[1-3]. The central goal of this approach is provide Sis to other standard models of statistical mechanics. Specifi-
information about the correlations between fluctuations of &ally, we study theg-state Potts modélwith q=2,3, and 7,
space and/or time varying property. Theoretical modeling othe simplest locally interacting statistical model exhibiting
self-affine growth processes frequently used some of th&oth first and second order static phase transitions. We study
models investigated in critical phenomena, e.g., directed pelso thep=10 clock model for which a Kosterlitz-Thouless
colation, random field Isinfil], and sine-Gordon modefd].  type phase transition is observed. Finally, since any connec-
These efforts faced an old problem: thirty years after thdivity problem can be studied by starting with pure random
renormalization group theory of critical phenomena, thepercolation and then adding interactions, we apply the rough-
quantitatively accurate prediction of the location and charachess method to random-site percolation.
teristics of phase transitions still constitute a challenging and In Sec. Il we describe the models and define the mapping
controversial questiofb]. This is particularly true when one between spin configurations and walk profiles. In Sec. lII,
considers systems with random quenched disofeler, ran-  using the mapping between spin states and profiles, we char-
dom field Ising and Potts models, spin glasses, and structur@cterize the phases of the random-site percolation problem
glasseg[6]), which exhibit nontrivial features such as ex- and Potts and clock models by the roughness expoaent
tremely slow dynamics, aging, ergodicity breaking, complexFina”y, we conclude and indicate future directions of this
energy landscapes, etc. work in Sec. IV.

On the other hand, the inverse problem, i.e., using the
roughness exponents to study the main features of the phase
diagram of equilibrium spin models, has not been explored
much up to now. In 1997, de Salesal.[7] mapped cellular Theg-state Potts ferromagnet consists of spin variables
automata(CA) configurations on solid-on-solid-like profiles that may take om discrete values;=0,1,...,0—1) and
and used the roughness exponento classify the elemen- are coupled by the dimensionless Hamiltonian
tary Wolfram CA rules. Later, they also showed that this
exponent could be used to detect the frozen-active transition
in the one dimensional Domany-Kinzel CAODKCA) [8] —,BH=K2 o(ai, o), (D)
without any reference to order parameters or response func- (i
tions. As we mentioned before, beyond the roughness expo-
nenta, the growth exponeng is another critical index used where (,) is the Kronecker delta function.
to describe roughening processes in the surface growth con- The p-state clock model is defined by the Hamiltonian

Il. MODELS AND FORMALISM
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—BH=K, cos[—ﬂ(ai—aj)
(i p

, 2 hi(t)= :
2 hi(h=5—7 ,:2 hi(t). (5
in which each spin can assumg discrete valueso; The roughness in the scateis given by
=0,1,...p—1.
In Egs. (1) and(2) the sums in(ij) run over the lattice 1 XN
sites and their nearest neighbof=1/kgT, T is the tem- W(N,e.t) =5 Zl Wi(N,€,t). 6

perature,K=£J, and J>0 is the coupling constant. We

simulated the Potts model with=2,3, and 7 and the clock  The roughnes®V(e) can distinguish two possible types of
model withp=10 states, on square latticeslofL XL sites  ,fjles. If it is random or even exhibits a finite correlation
imposing periodic boundary conditions. For updating thelength extending up to a characteristic rarigach as in a
spins we use a sequential Monte Carlo heat-bath process. Markov chain, thenW~ €2 as in a normal random walk.

_ Inrandom-site percolation, one randomly occupies a fraCyy congrast, if the profile has infinitely long-range correla-
tion p of the sites of ad-dimensional lattice ¢;=0, empty  ions (no characteristic lengihthen its roughness will be
site; oj=1, occupied site Whenp is small, the pair con- gescribed by a power law scaling such as

nectedness length scafg is short, comparable to the lattice
constanta. However, whenp approache9,., there occur (7)
fluctuations in the characteristic size of clusters on all scales

from ato &,, which diverges ag,~|p—p| 'r. Each fea- with a# 1/2. The caser>1/2 implies that the profile pre-
ture of thermal critical phenomena has a corresponding an&ents persistent correlations; i.e., a given displacement se-
log in percolation, so that the percolation problem is called ayuence(increasing or decreasings likely to be close to
geometric or connectivity critical phenomena. For site peranother of the same type. On the other hand, profiles with
colation on the square lattice the critical probabilitypis o< 1/2 are anticorrelated, which means that displacement
=0.59275-0.000 03[10]. sequences containing a great fraction of steps to the right are
In the present work we mainly focus on the numericalmore likely to alternate with another one in which steps to
study of the self-affine profiles generated from the configuthe left are predominant and vice versa. The exponeig
rations in the ordered and disordered phases of the Potts apgstricted to the interval0,1] and is related to the fractal
clock models and in the site-percolation problem. As showrdimensiond of the profile bya=2-—d [1,2].
in a previous work[8] the spin states can be mapped on
random walklike profiles, and the correlations present in
them can be measured using the roughness exponent. The
simplest method to generate walk profiles from the spin con- Before discussing the results, we shall give a very brief
figurations at a timé is a 1:1 mapping in which each spin review of the equilibrium phase diagrams of tpstate Potts

W(e)~ e,

IIl. RESULTS

stateo;(t) is associated with a st the right or to the lejt

andp= 10 clock models. The square lattigestate Potts fer-

of a one-dimensional walk. Specifically, to a unique spinromagnet presents a second order phase transitiog<td&

configuration {o4(t),0(1), ... ,on(t)} corresponds to a
spatial profile{h;(t),h,(t), ... hy(t)}, given by the se-
guence of the walker displacemermisafteri unit steps de-

and a first order one foq=5 at the critical temperatures
TW=1/In(1+/q) (in units of J/kg). The p-state clock
model interpolates between the Isingp=<2) and the

fined as XY (p— ) models. Fop=5 one expects the emergence of

a soft spin-wave phase between the ordered, low tempera-
ture, and the disordered, high temperature phas&k For
the p= 10 case, the spin-wave phase is limited by the transi-
tion temperature3 .- 19=0.24 andT{19=1.0[12].

In Fig. 1 we show typical walk profiles generated by spin
configurations of the Ising modef & 2). From data similar
to those in Fig. 1 for different temperatures, we obtained the
behavior of the roughness exponentsas shown in Fig. 2,
éor the Ising model withL =64 and 128. These results cor-
respond to averages over typicallf =100 random initial
gonfigurations taken after thermalization. The roughness ex-
ponent exhibits an abrupt fall from=1.0 to «=0.5 at the
temperatureT,_,=1.13 that agrees with the static critical
valueT{9=2)=1.134 . . . . As weincrease the system size we
can note that the change of at T,—, becomes sharper,
suggesting a step function for thdT) curve at the thermo-
dynamical limit, and a high-temperature value of the expo-
nent« tending toa=0.5. Indeed, the inset in Fig. 2 shows
that the widthAT=T,—T, goes to zero adN increases,

hi(H)=2, pi(t), 3

wherep;=o;—(q—1)/2 for theq=3 andq=7 Potts mod-
els, pj=0j—5 (pj=0;—4) if oj<4 (if 0;>4) for the p
=10 clock model, andpj=20;—1 for the Ising =2)
model and site percolation.

After having obtained the profiles by these mappings, th
roughness exponent was calculated by determining the av-
erage standard deviation of parts of the profiles with variou
scalese. At sitei, in the scalee, the rms displacement fluc-
tuation is given by

1
Wi(N,e,t)= \/2.s+1

I+e

> [hi(t)—hi(1%

j=i—e

(4)

with
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FIG. 1. Walk profiles obtained from equilibrium spin configu- FIG. 3. The roughness exponentas a function of temperature
rations of the Ising model q=2) at T=150>T{"? and T for the q=3 andq=7 Potts model withL=128. Forq=3 the
=1.12<T{? (insey. model exhibits a second order phase transition, andjfo¥ a first

order one. The arrows indicate the static critical temperatures
whereAT is arbitrarily defined as the difference between theT(@=% and T(@=7),

observed upper temperatufe for which «=0.999 and the

temperaturel, for which « has fallen to half its maximum «(T) curves across the critical surfaces corresponding to
(a=0.75). We also observe that, in this same limit, the tem-second ¢=3) or first (0=7) order phase transitions.

peratureT, tends to the exact critical temperatufé&?=2) In Fig. 4 we show a typical log-log plot ol versuse for
[T,(L=64)=1.075, T,(L=128)=1.10 and T,(L=256) the Ising model, whose fitted slopes give the roughness ex-
=1.125]. ponent values. We observe, in general, the existence of two

In Fig. 3 we show similar behaviors for tlee=3 andq distinct linear portions in the curve, whose intersection point
=7 Potts model with.=128. The abrupt falls in the expo- defines a particular length scal&. The value ofe* seems to
nent « are located at the temperaturdg_;=0.99 and be a measure of the average size of the spin islands or mag-
T4=7=0.77 which are also in good agreement with the staticnetized microdomains limited by the correlation leng(f¥).
critical valuesT{"¥=0.9%... and T ""=0.773.... Indeed, at the ferromagnetic phase, for small scales (
The valuesa=1 observed in the low temperature phases<e*) there is resolution to see the local spin fluctuations
correspond to flat profiles reflecting the existence of long-around the smooth profile, which leads to €.4<1.0. For
range ordermagnetization In contrast, the valueg=0.5 large scales{>¢€*) the profile is flat and the valuas=1
obtained in the high temperature phases characterize randoieflect the long-range order. At high temperatusgsapidly
walk profiles, as expected for disordered spin configurationslecreases to the lattice constant 1, which agrees with the
Finally, any qualitative difference is observed among thefact that such crossover is not observed in a random profile.
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FIG. 2. The roughness exponesntas a function of temperature FIG. 4. A typical log-log plot ofW(e) versuse used to deter-

for the Ising model with system sizés=64 andL=128. The arrow  mine the roughness exponeat characterizing a profile obtained
indicates the static critical temperatuF'~2) . The inset shows the from an Ising spin equilibrium configuration far=1.10<T{=2),
behavior of the widthAT (see text with the inverse of the system We can see clearly a length scalé that marks a change in the
size N, indicating thata(T) is a step function at thBl— o limit. slope of the fitted straight lines.
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FIG. 5. The characteristic leng#f as a function of temperature FIG. 6. The characteristic leng#t as a function of temperature
T for the Ising model with system size=128. €* exhibits a maxi- C ) .
g Wit Sy ! e exnb X! eT for the q=3 andgq=5 Potts models with system site=128.

mum around the critical temperature of the model. The solid curvi
represents the exact behavior for the correlation lerigih the
disordered phase. The arrow indicates the static critical temperatufeeaks around the temperatur'é('csq:3) and T(Cq:”.
T@=2), In Fig. 7 we show typical walk profiles generated by spin
configurations of thgg=10 clock model at three tempera-

An additional support to the relationship betwegnandéis  tures:T=0.15, located in the ordered phade=0.40, in the
provided by Fig. 5, which shows that* (for the Ising  spin-wave phase; an@i=1.60 in the disordered one. The
mode) has a peak near the temperatlige ,. The heightand  roughness exponent as a function of the temperature for
sharpness of this peak increase with the system size. A finitgye p=10 clock model is shown in Fig. 8. It suggests the
size analysis for the Ising model shows that the maximungxistence of three distinct phases, namely, a low temperature
value of the crossover leng#f (which occurs near the criti- |t (a=1) phase with long-range order and extending up to
cal poind scales linearly with the system side=L?, simi- T, _,:=0.25, a high temperature, disordered and rough (
larly jco the correlation lengtlg. In tact, Fig. 5 sgggests that ~0.5) phase foll >Tg,-10=1.0, and an intermediate, rough
e* diverges afT; as " ~(T—Tc) " * for the Ising model.  (0.80<a<0.90) phase on the temperature rarbg,-1o
Moreover, the behavior of* nearT{"~?) is similar to the  <T<Tg,_;,. These transition temperatures are in good
two-dimensional Ising model correlation length, whose exachgreement with those obtained for the static transitions be-
expressiort=1/(8* — B) is known for3<p. [13] (see Fig. tween the ferromagnetic, paramagnetic and soft spin-wave
5). Here, the dual inverse temperatysé is given by €°  phases of this mod¢lL2]. The behavior of* as a function
—1)(ef" —1)=2. of temperature is shown in Fig. @*(T) exhibits a sharp

A recent work by Kantelhardet al. [14] provides the peak aroundlig,-q, the critical temperature separating the
strongest support of the close relation between the lengtharamagnetic and the spin-wave phases, as well as a sudden
scalese* and ¢ that we suggest here based on our limitedjump nearT,,—19, Where the transition between the ferro-
numerical evidence. These authors demonstrated that the de-
trended(trend suppresseductuation analysi$DFA), which 0
we used here in zero order, can detect crossovers in the ob- T=0.15
served long-range correlation behavior of data series. They 0000
analyzed artificial data with a crossover from long-range cor- T=0.40
relations @>0.5) for s<s, to uncorrelated behavior fo 3000 - 20000 |-
>s, or vice versa. Their DFA results clearly revealed the
crossover and provided estimated crossover lengfHsal- g
ways larger than the real by a systematic deviation that 6000 |-
increases with the detrending order Also, the estimated wof- T=1.60
s&“) were less accurate far close to 0.5. Support for our
suggestion comes from the analogy between the artificial se- 300 -
ries generated by Fourier transforms studie@lli# and our 9000 |- oL L—L——
data series build from spin configurations in which only ther- L L L
mal correlations, extending up to the scéléhe correlation ! 1024 20,48 so7 4096
length, are present. !

The existence of two distinct linear portions in the plots of  F|G. 7. Walk profiles obtained from equilibrium spin configu-
W versuse is also observed in the Potts model. In Fig. 6 therations of thep=10 clock modelT=0.15 is located in the ordered
behavior ofe* as a function of temperature for the Potts phase, T=0.40 is in the spin-wave phase, afi¢=1.60 is in the
model withq=3 and 7 is shown. We can note the sharpdisordered one.

| L |
1024 2048 3072 409¢|

600 |-
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FIG. 9. The characteristic leng#f as a function of temperature
T for the p=10 clock model with system sidze=128. The arrows
indicate the static critical temperatur&§,'? and TE19,

FIG. 8. The roughness exponestas a function of temperature
for the p=10 clock model with system size=128. This model
exhibits a Kosterlitz-Thouless type phase transitioff &0.24.

magnetic and spin-wave phase occurs. But, the main featufrobability p, showing that the roughness exponents in-

of Fig. 9 is that, in the spin-wave phaself_1<T sensitive to detect geometric crltlcal_ phenomena. _

<Tgp-10), € has a high and almost constant value as ex- The same analysis can be applied to damage-spreading

pected for a Kosterlitz-Thouless “critical” phase character-Phase transitions by focusing on the difference configura-

ized by an infinite correlation length at all those tempera- tions between two replicas of the system, as done by Atman

tures[5]. and More|r§{9]. Moreover, using the groyvth exponefitwe
Finally, the roughness exponent method applied to théan determine the phase diagram of spin models without any

random site percolation problem results in a constant valufhermalization, leading to an impressive gain in simulation

a=1/2 for the roughness exponent over the entire range ofP€ed. _ _ . _

the probability p. This result is expected since in site- We are extending our simulations in order to rghably es-

percolation a fractiom of the lattice sites is randomly occu- timate the value of the exponept and compare this value

pied, generating random profiles in both phases. In additionith the known critical exponents for the Ising model. We

a length scalee* in the log-log plots ofW versuse, as  Cconjecture that the exponeptcontrolling the divergence of

occurred in the magnetic models, is not observed. €* is the same as the correlation length exponefar this
model.

Another problem we can address using this roughness
method is the location of phase transitions in disordered

In this study we have shown that spin configurations formodels such as random field and Ising spin glass models. For
the Pottgwith g=2,3, and 7 stat¢sandp=10 clock models spin glasses, exchangéparallel tempering techniques
exhibit distinct self-affine characteristics, measured by thegreatly improve traditional Monte Carlo algorithms, but the
roughness exponent. The low temperature phases of the Sizes and temperatures accessible to simulations are still in-
Potts model correspond to flat&1) profiles, whereas the sufficient to clearly solve several important questiféis In
h|gh temperature phases are associated with rough (particular, the value of the critical temperature for the2
=0.5) ones. For thg=10 clock model, in addition to the *J Edwards-Anderson model is controversial.
flat (ferromagnetiz and rough(paramagneticprofiles, an in- Apart from the application of the roughness method to
termediate rough (05a<1) phase, associated with a soft SPin models, a central issue is the nature of the relationship
spin-wave one, is found. The transition temperatures bebetween the correlations measured on the spin-state profiles
tween the different roughness regimes are in good agreemefY thea or g exponents and the traditional two-point corre-
with the static critical temperatures of these models. Oufation functionsC(r). We intend to examine this question
results show that the roughness exponent method is able fgore carefully in a future work.
detect equilibrium phase transitions and provides an accurate
numerical determination of the critical surfaces without any
reference to thermodynamical potentials, order parameters,
or response functions. In contrast, the roughness exponent We thank Albens Atman and JoSailherme Moreira for
method applied to the random site-percolation problem rediscussions. This work was supported by FAPEMIG and
sults in a constant value=1/2 over the entire range of the CNPq, Brazilian agencies.
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